\boldsymbol{h} analogue of Newton's binomial formula

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 L751
(http://iopscience.iop.org/0305-4470/31/46/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:19

Please note that terms and conditions apply.

LETTER TO THE EDITOR

h analogue of Newton's binomial formula

H B Benaoum
Institut für Theoretische Physik, Technische Universität, Clausthal Leibnizstrasse 10, 38678 Clausthal, Zellerfeld, Germany \dagger

Received 17 July 1998, in final form 9 October 1998

Abstract

In this letter, the h analogue of Newton's binomial formula is obtained in the h deformed quantum plane which does not have any q analogue. For $h=0$, this is just the usual one, as it should be. Furthermore, the binomial coefficients reduce to $\frac{n!}{(n-k)!}$ for $h=1$. Some properties of the h binomial coefficients are also given. Finally, it is hoped that such results will contribute to an introduction of the h analogue of the well known functions, h special functions and h deformed analysis.

The study of q analysis appeared in the literature a long time ago [1]. In particular, a q analogue of Newton's formula, well known functions like the q exponential, q logarithm, etc, and the special function arena's $[1,5,6]$ have been introduced and studied intensively.

A q analogue of these was obtained by taking q commuting variables, x, y, satisfying the relation $x y=q y x$, i.e. (x, y) belong to the Manin plane.

In this letter, I will take another direction by introducing the analogue of Newton's formula in the h deformed quantum plane [8, 7] (i.e. h Newton binomial formula). As far as I know, such an h analogue did not exist in the literature until now and the result will, in the future, permit the introduction of the h analogue of well known functions, h special functions and h deformed analysis.

Newton's binomial formula is defined as follows:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} y^{k} x^{n-k} \tag{1}
\end{equation*}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ and it is understood here that the coordinate variables x and y commute, i.e. $x y=y x$.

A q analogue of (1) for the q commuting coordinates x and y satisfying $x y=q y x$ was first stated by Rothe, although its special cases were known to Euler, see [3], found again by Schützenberger [2], and has subsequently been rediscovered many times [4].

A q analogue of (1) becomes

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2}\\
k
\end{array}\right]_{q} y^{k} x^{n-k}
$$

where the q binomial coefficient is given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

\dagger Present and permanent address: Institut für Physik, Johannes Gutenberg Universität, 55099 Mainz, Germany. E-mail address: benaoum@thep.physik.uni-mainz.de
with

$$
(a ; q)_{k}=(1-a)(1-q a) \ldots\left(1-q^{k-1} a\right) \quad a \in \mathbb{C}, k \in \mathbb{N}
$$

Now consider Manin's q plane $x^{\prime} y^{\prime}=q y^{\prime} x^{\prime}$. By the following linear transformation (see [8] and references therein)

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & \frac{h}{q-1} \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Manin's q plane changes to $x y-q y x=h y^{2}$ which for $q=1$ gives the h deformed plane

$$
\begin{equation*}
x y=y x+h y^{2} . \tag{3}
\end{equation*}
$$

Even though the linear transformation is singular for $q=1$, the resulting quantum plane is well defined.

Proposition 1. Let x and y be coordinate variables satisfying (3), then the following identities are true:

$$
\begin{align*}
& x^{k} y=\sum_{r=0}^{k} \frac{k!}{(k-r)!} h^{r} y^{r+1} x^{k-r} \tag{4}\\
& x y^{k}=y^{k} x+k h y^{k+1}
\end{align*}
$$

These identities are easily proved by successive use of (3).
Proposition 2 (h binomial formula). Let x and y be coordinate variables satisfying (3), then we have

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{5}\\
k
\end{array}\right]_{h} y^{k} x^{n-k}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{h}$ are the h binomial coefficients given as follows:

$$
\left[\begin{array}{l}
n \tag{6}\\
k
\end{array}\right]_{h}=\binom{n}{k} h^{k}\left(h^{-1}\right)_{k}
$$

with $\left[\begin{array}{l}n \\ 0\end{array}\right]_{h}=1$ and $(a)_{k}=\Gamma(a+k) / \Gamma(a)$ is the shifted factorial.

Proof. We will prove this proposition by recurrence. Indeed for $n=1,2$, it is verified.
Suppose now that the formula is true for $n-1$, which means

$$
(x+y)^{n-1}=\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h} y^{k} x^{n-1-k}
$$

with $\left[\begin{array}{c}n-1 \\ 0\end{array}\right]_{h}=1$.
To show this for n, let us first consider the following expansion:

$$
(x+y)^{n}=\sum_{k=0}^{n} C_{n, k} y^{k} x^{n-k}
$$

where $C_{n, k}$ are coefficients depending on h.

Then, we have

$$
\begin{aligned}
(x+y)^{n} & =(x+y)(x+y)^{n-1} \\
& =(x+y) \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h} y^{k} x^{n-1-k} \\
& =\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h} x y^{k} x^{n-1-k}+\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h} y^{k+1} x^{n-1-k} .
\end{aligned}
$$

Using the result of the first proposition, we obtain

$$
\begin{aligned}
(x+y)^{n} & =\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h} y^{k} x^{n-k}+\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h}(1+k h) y^{k+1} x^{n-1-k} \\
& =\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h} y^{k} x^{n-k}+\sum_{k=1}^{n}\left[\begin{array}{c}
n-1 \\
k-1
\end{array}\right]_{h}(1+(k-1) h) y^{k} x^{n-k}
\end{aligned}
$$

which yields respectively

$$
\begin{aligned}
C_{n, 0} & =\left[\begin{array}{c}
n-1 \\
0
\end{array}\right]_{h}=1 \\
C_{n, k} & =\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{h}+(1+(k-1) h)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{h}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{h} \\
C_{n, n} & =\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{h}(1+(n-1) h)=\left[\begin{array}{l}
n \\
n
\end{array}\right]_{h} .
\end{aligned}
$$

Moreover, the h binomial coefficients obey the following properties:

$$
\left[\begin{array}{l}
n \tag{7}\\
k
\end{array}\right]_{h}+(1+(k-1) h)\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{h}=\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{h}
$$

and

$$
\left[\begin{array}{l}
n+1 \tag{8}\\
k+1
\end{array}\right]_{h}=\frac{n+1}{k+1}(1+k h)\left[\begin{array}{l}
n \\
k
\end{array}\right]_{h} .
$$

In fact, these properties follow from the well known relations of the classical binomial coefficients:

$$
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}
$$

and

$$
\binom{n+1}{k}=\frac{n+1}{k}\binom{n}{k-1}
$$

upon using $(a)_{k}=(a+k-1)(a)_{k-1}$, which means that (7) and (8) are just a consequence of the known properties of the classical coefficients and the shifted factorial.

Now, we make the following remarks. First, for $h=0$ the Newton's binomial formula is just the usual one for commuting variables $x y=y x$, as it should be.

Second, for $h=1$ the $h=1$-binomial coefficients are

$$
\left[\begin{array}{l}
n \tag{9}\\
k
\end{array}\right]_{h=1}=\frac{n!}{(n-k)!}
$$

and therefore the $h=1$-analogue of Newton's binomial formula becomes

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n} \frac{n!}{(n-k)!} y^{k} x^{n-k} \tag{10}
\end{equation*}
$$

provided that $x y=y x+y^{2}$.
To conclude, we see that the h analogue of Newton's formula in the h deformed plane has no q analogue. It seems from the structures of the h binomial coefficients that the h deformed plane is somewhat 'more classical' than the q deformed plane.

I would like to thank the DAAD for its financial support and the referee for his remarks. Special thanks also go to Professor H-D Doebner, Dr R Häußling for reading the manuscript and Professor F Scheck for encouragements.

References

[1] For historical details see Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[2] Schützenberger M P 1953 Une interprétation de certaines solutions de l'équation fonctionnelle: $F(x+y)=$ $F(x) F(y)$ C. R. Acad. Sci., Paris 236352
[3] Biedenharn L C and Lohe M A 1995 Quantum Group Symmetry and q Tensor Algebras (Singapore: World Scientific) p 60
[4] Cigler J 1979 Operatormethoden für q Identitäten Monatsh. Math. 8887
[5] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable (Berlin: Springer)
[6] Koornwinder T H 1996 Special functions and q commuting variables Preprint q-alg/9608008 and references therein
[7] Benaoum H B and Doebner H-D 1998 Noncommutative differential calculus on the N-dimensional h deformed quantum bosonic and fermionic space Preprint TU, Clausthal
[8] Cho S, Madore J and Park K S 1997 Noncommutative geometry of the h deformed quantum plane Preprint q-alg/9709007

